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Abstract

We briefly summarize a new approach elaborated to describe algorithmically the
finite dimensional polynomial Hamiltonian systems with constraints. The proposed
scheme is based on the intensive use of the Gröbner bases technique and allows
one to compute a complete set of constraints, categorize them and to construct the
generator of a local symmetry transformations for a given finite dimensional poly-
nomial degenerate model.

1 Introduction
Nowadays due to the progress in computer algebra many classical problem of mathematics
and theoretical physics requiring a huge calculational work become feasible. One of the
basic mathematical procedure, completion to involution [1, 2, 3], of systems of differential
equations represents such a complicated and highly nontrivial issue in view of its compu-
tational realization. Its practical application to theoretical physics is very actual since the
problem of completion is the heart of the Dirac constraint formalism [4], which is the
basic tool of all modern gauge theories.

During the last few years we have attempted to elaborate an algorithmic description
for the degenerate polynomial Hamiltonian mechanical models [5]-[7] and implement it in
a proper computer algebra software. The key element of our approach was the intensive use
of the most universal algorithmic tool of commutative algebra, the well-known Gröbner
bases theory [8]-[10]. Because this technique provides an effective algorithmic instrument
to verify whether a polynomial vanishes on the manifold defined by a set of other polyno-
mials, the Gröbner bases method plays the principal role in algorithmic implementation of
the key issues of the Dirac constraint formalism: computation and separation of constrains.

In the present report we only briefly sketch some main elements of the Dirac-Bergmann-
Gröbner algorithmic procedure to deal with the practically important case of finite-
dimensional degenerate polynomial Lagrangian system. All details of the proposed algo-
rithmic scheme as well as an application can be found in recent publications [5]-[7],[11]-[13].

2 The Dirac-Bergmann-Gröbner algorithm
Here we describe an algorithmic reformulation of the Dirac method to making it compu-
tationally effective for the models where both, the number of degrees of freedom as well
as the number of free parameters are sufficiently large. We restrict our consideration
to dynamical systems with the finitely many degrees of freedom whose Lagrangian is a
polynomial in coordinates and velocities with rational (possibly parametric) coefficients
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L(q, q̇) ∈ Q[q, q̇]. We use the notions and definitions of the commutative algebra adopted
from [8] and [9].

Consider an arbitrary n-dimensional mechanical system in Rn with the Lagrangian
L(q, q̇) , defined on a tangent space as a function of the coordinates q := q1, q2, . . . , qn and
velocities q̇ := q̇1, q̇2, . . . , q̇n .

The Lagrangian system is regular if the rank r := rank‖Hij‖ of the corresponding
Hessian function Hij := ∂2L/∂q̇i∂q̇j is maximal (r = n). In this case the Euler-Lagrange
equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , 1 ≤ i ≤ n (1)

rewritten explicitly as

Hij q̈j +
∂2L

∂qj∂q̇i
q̇j − ∂L

∂qi
= 0

can be resolved with respect to the accelerations (q̈) and there are no hidden constraints.
Otherwise, if r < n, the Euler-Lagrange equations (and, thus, the Lagrangian system
itself) are degenerate or singular. In the last case not all differential equations (1) are
of second order, namely there are n − r independent equations, Lagrangian constraints,
containing only coordinates and velocities. Performing the Legendre transformation

pi :=
∂L

∂q̇i
, (2)

the degeneracy of the Hessian results in the existence of n−r relations between coordinates
and momenta, the primary constraints

ϕ(1)
a (p, q) = 0 , 1 ≤ a ≤ n− r . (3)

From (3) the dynamics is constrained by the set Σ1 and according to the Dirac prescription
is governed by the total Hamiltonian

HT := HC + Ua ϕ
(1)
a , (4)

which differs from the canonical Hamiltonian HC(p, q) = piq̇i −L by a linear combination
of the primary constraints with the Lagrange multipliers Ua.

Algorithm to determine the primary constraints
Equations (3) define the so-called primary constraints subset Σ1. These relations

generate the polynomial ideal in Q[p, q, q̇]

Ip,q,q̇ ≡ Id(∪n
i=1{pi − ∂L/∂q̇i}) ⊂ Q[p, q, q̇] . (5)

Thereby, primary constraints (3) belong to the radical
√
Ip,q of the elimination ideal

Ip,q = Ip,q,q̇ ∩Q[p, q] .

Correspondingly, for an appropriate term ordering which eliminates q̇, a Gröbner basis of
Ip,q (denotation: GB(Ip,q)) is given by [8, 9, 10]

GB(Ip,q) = GB(Ip,q,q̇) ∩Q[p, q] .
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This means that construction of the Gröbner basis for the ideal (5) with omitting elements
in the basis depending on velocities and then constructing of GB(

√
Ip,q) allows us to

compute the set of primary constraints. If GB(
√
Ip,q) = ∅, then the dynamical system

is regular. Otherwise, the algebraically independent set Φ1 of primary constraints is the
subset Φ1 ⊂ GB(

√
Ip,q) such that

∀φ(p, q) ∈ Φ1 : φ(p, q) 
∈ Id(Φ1 \ {φ(p, q)}) . (6)

An algorithmic verification of (6) consist in computation of the following normal form:

NF (φ,GB(Id(Φ1 \ {φ})).
In addition, the canonical Hamiltonian Hc(p, q) is computed as

NF (piq̇i − L,GB(Ip,q,q̇)).

Algorithm to determine the higher constraints and to classify them
The dynamical requirement that classical trajectories remain in Σ1 during the evolution

ϕ̇(1)
a = {HT , ϕ

(1)
a } Σ1= 0 (7)

provides a quarantine of the consistency. In (7) the evolutional changes are generated by
the canonical Poisson brackets with the total Hamiltonian (4) and the abbreviation Σ1=
stands for a week equality, i.e., the right-hand side of (7) vanishes modulo the primary
constraints (3).

The consistency condition (7), unless it is satisfied identically, may lead either to a
contradiction or to a determination of the Lagrange multipliers Ua , or to new constraints.
The former case indicates that the given Hamiltonian system is inconsistent. In the latter
case when (7) is not satisfied identically and is independent of the multipliers Ua the
left-hand side of (7) defines the new constraints. Otherwise, if the left-hand side depends
on some Lagrange multipliers Ua the consistency condition determines these multipliers,
and, therefore, the constraints set is not enlarged by new constraints. The subsequent
iteration of this consistency check ends up with the complete set of constraints and/or
determination of some/or all Lagrange multipliers.

The number of Lagrange multipliers Ua which can be found is determined by the rank
of the so-called Poisson bracket matrix

Mαβ :
Σ
= {φα, φβ} , (8)

where Σ denotes the subset of a phase space defined by the complete set of constraints
Φ := (φ1 , φ2 , . . . , φk )

Σ : φα(p, q) = 0 , 1 ≤ α ≤ k . (9)

including all primary ϕ(1), secondary ϕ(2), ternary ϕ(3), etc., constraints,
If rank (M) = m, then s := k −m linear combinations of constraints φα

ψα(p, q) =
∑
β

cαβ(p, q)φβ , (10)
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define the first-class constraints, whose Poisson brackets are weakly zero

{ψα(p, q), ψβ(p, q)} Σ
= 0 1 ≤ α , β ≤ s . (11)

The remaining functionally independent constraints form the subset of the so-called
second-class constraints .

The dynamical consequences (7) of a primary constraint can also be algorithmically
analyzed by computing the normal form of the Poisson brackets of the primary constraint
and the total Hamiltonian modulo GB(

√
Ip,q). Here the Lagrange multipliers Ua in (4) are

treated as time-dependent functions. If the non-vanishing normal form does not contain
Ua, then it is nothing else than the secondary constraint. In this case the set of primary
constraints is enlarged by the secondary constraint obtained and the process is iterated. At
the end either the complete set Φ of constraints (9) is constructed or some inconsistency is
detected. The detection holds when the intermediate Gröbner basis, whose computation
is a part of the iterative procedure, becomes {1}.

Categorization of constraints
In order to separate the set Φ = {φ1, . . . , φk} into subsets of the first and second class

constraints the entries of Poisson brackets matrix M are evaluated as normal forms of the
Poisson brackets of the constraints modulo a Gröbner basis of the ideal generated by set
Φ. Afterwards if the basis E = {e(1), . . . , e(k−m)} of the null space (kernel) of this matrix
M is known the each basis vector e(s) ∈ E , s = 1, . . . , k − m generates the first-class
constraint of form e(s)

α φα . The second class constraints are build using the basis of the
m-dimensional space E⊥ , orthogonal to the E subspace. With the aid of these vectors
e

(l)
⊥ ∈ E⊥ , l = 1, . . . , m the second-class constraint are constructed as e

(l)
⊥αφα .

Concluding we see that the constraints separation can be performed using the linear
algebra operations with the matrix M alone. Together with the Gröbner bases technique
this implies full algorithmisation for computing the complete set of algebraically indepen-
dent constraints and their classification.

Algorithmic search for the generator of local symmetry transformations
First-class constraints play a very special role in the Hamiltonian description: they

provide the basis for a generator of local symmetry transformations. Now we will demon-
strate that the construction of the generator of local symmetry can be cast into the
algorithmic form also.

Follow to the Dirac conjecture [4] the generator G of local transformations is expressed
as a linear combination of all first-class constraints

G =
k1∑

β=1

ε
(1)
β φ

(1)
β +

s∑
γ=k1+1

ε(2)
γ φ(2)

γ , (12)

and its action on phase space coordinates (q, p) is given now with the aid of the Dirac
bracket due to the presence of the second-class constraints [4]

δqi = {G, qi}D, δpi = {G, pi}D .

In (12) the coefficients ε(1)
β and ε(2)

γ are functions of time t and the first sum includes k1

primary first-class constraints while the second sum contains the all remaining first-class
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constraints. The total time derivative of the gauge-symmetry generator (12) must be zero

dG

dt
=
∂G

∂t
+ {G,HC}D

Σ1= 0 , (13)

the generator of local transformation is conserved modulo the primary constraints. Since
the set of first-class constraints is complete, the Dirac bracket in the right-hand side of
(13) is

{φµ, HC}D = ρµνφν . (14)

The functions ρµν can be algorithmically computed by using the Gröbner bases method.
To perform this computation one can use, for example, the extended Gröbner basis
algorithm [8]. Given a set of polynomials F = {f1, . . . , fm} ⊂ Q[p, q] generating the
polynomial ideal Id(F ), this algorithm yields the explicit representation

gi = hij fj (15)

of elements in the Gröbner basis {g1 . . . , gn} of this ideal in terms of the ideal generated by
polynomials in F . Therefore, having computed a Gröbner basis for the ideal generated by
the first-class constraints and the corresponding polynomial coefficients for the elements in
the Gröbner basis as given in (15), the coefficients ρµν are easily computed by reduction [10,
9, 8] of the Dirac bracket in (14) modulo the Gröbner basis expressed in terms of the
first-class constraints φν . Note that one can similarly compute the algebra of first-class
constraints

{φα, φβ}D = 
αβγφγ ,

if the structure functions 
αβγ are polynomials in p, q.
This finalize the list of basic issues of the Dirac constraint formalism admitting the

algorithmic realization.

3 Implementation
The above described algorithms where at first implemented in Maple [5, 7] and exemplified
for the model having important physical applications, so-called Yang-Mills mechanics with
the structure group SU(2).

However, in attempts to perform calculations for the higher structure groups, e.g.
SU(3), we faced with computational difficulties. The standard Gröbner bases routines
built-in Maple was not efficient enough to perform computation needed. We also tried
recent extensions of the Maple Gröbner bases facilities with the external packages Gb and
Fgb created by J.C. Faugère [14]. Unfortunately Gb runs for our problems even slower
than the built-in package whereas Fgb cannot deal with the parametric coefficients. By
the last reason we cannot use yet the Ginv [15] software that is a C++ module of Python
and implements the efficient involutive algorithms [3] for the construction of the involutive
or/and Gröbner bases.

4 Concluding remarks
It should be emphasized that manipulation with the parametric coefficients is essential
for the Dirac formalism due to the presence of physical parameters (e.g. masses, coupling
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constants) in the initial Lagrangian, the Lagrange multipliers in the total Hamiltonian (4).
Having these needs in mind we implemented the algorithms in Mathematica whose built-
in routine GroebnerBasis as well as Groebner in Maple allows to compute parametric
Gröbner bases but performs computation much faster.

It is worth to note that the implementation in Ginv of multivariate GCD computation
that is necessary for computation of Gröbner bases with the parametric coefficients is in
progress now in collaboration with the RWTH, Aachen.

More details on the suggested scheme to implement computer algebra for calculations
in the framework of the constrained Hamiltonian systems as well as its applications to
the physical interesting models one can find in our recent publications [11]-[13].
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V. Ufnarovski (Eds.), Computational Commutative and Non-Commutative algebraic geometry,
NATO Science Series, IOS Press, 199–225, 2005, arXiv:math.AC/0501111.

[4] Dirac, P.A.M.: Generalized Hamiltonian dynamics, Canad. J. Math. 2, 129–148, 1950; Lectures on
Quantum Mechanics, Belfer Graduate School of Science, Monographs Series, Yeshiva University,
New York, 1964.

[5] Gerdt, V.P., Gogilidze, S.A.: Constrained Hamiltonian systems and Gröbner bases, in: V.G. Ganzha,
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